Notes on Convex Sets

4 July 2010

These are a few definitions and quick observations that may be helpful when reading Vic Klee's "Unsolved Problems in Intuitive Geometry". Everything is taken from the introductory chapters of [1]. We will be working exclusively in the n-dimensional Euclidean space E^{n}.

Definition 1. A set C is convex if for every pair of points $x, y \in C$, the closed line segment from x to y is contained in C. That is, C contains the point $t x+(1-t) y$ for every $t \in[0,1]$. We call C a convex body if it is convex and compact.

It is immediately clear from the definition that the intersection of any family of convex sets is also convex. As a result, the next definition makes sense.

Definition 2. The convex hull of a set $X \subset E^{n}$ is the intersection of all the convex sets of E^{n} containing X. Equivalently, the convex hull of a nonempty set $X \subset E^{n}$ is the set of convex combinations

$$
\sum_{i=1}^{k} \alpha_{i} x_{i}, \quad \text { where } \quad x_{i} \in X, \alpha_{i} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1, k \in[n] .
$$

Thus we can view the convex hull of a set as the "smallest" convex set containing it. It is important to note that the convex hull of a compact set is a convex body. In particular, the convex hull of a finite set, a polyhedron ${ }^{1}$, is a convex body.

We now take a look at some of the creatures that interact with our convex sets.
Definition 3. A set $F \subset E^{n}$ is a flat (or affine variety) of dimension k if it takes the form $x+V$ where V is a subspace of dimension k. A hyperplane is an ($n-1$)-dimensional flat.

Note that the intersection of a polyhedron with a flat is also a polyhedron.
A hyperplane H cuts a set X if both open halfspaces determined by H contain points in X. A hyperplane H supports X if H does not cut X, but the distance $d(X, H)=\inf \{\|x-h\| \mid x \in X, h \in H\}=0$. If X is a convex set in E^{n}, then F is a face of X if $F=\emptyset, F=X$ or there is a supporting hyperplane H of X where $F=H \cap X$.

Definition 4. A projective transformation is a map $T: E^{n} \rightarrow E^{n}$ where

$$
T x=\frac{A x+b}{\langle c, x\rangle+d},
$$

where A is a linear transformation of E^{n} to itself (taken to be a matrix), b and c are n-dimensional row vectors, d is a scalar, and either c or d is nonzero. A projective transformation is called an affine transformation if the denominator $\langle c, x\rangle+d$ is nonzero for all x. It is called nonsingular if $\left(\begin{array}{cc}A & b^{T} \\ c & d\end{array}\right)$ is invertible.

If $A, B \subset E^{n}$, they are said to be affinely equivalent if there is a nonsingular affine transformation from A onto B.

The image of a convex set under an affine transformation is also a convex set. Furthermore, the affine image of a polyhedron is also a polyhedron.

[^0]Definition 5. A set $\left\{x_{1}, \ldots, x_{k}\right\}$ is affinely dependent if there is a linear combination $\sum_{i=1}^{k} a_{i} x_{i}=0$ where some $a_{i} \neq 0$ and $\sum_{i=1}^{k} a_{i}=0$. An n-simplex is the convex hull of $n+1$ affinely independent points.

It is easy to see that each pair of n-simplices is affinely equivalent.

References

[1] Branko Grünbaum. Convex Polytopes, Second Edition. Springer-Verlag, New York, 2003.

[^0]: ${ }^{1}$ Some authors reserve the term "polyhedron" for 3-dimensional bodies, and use the term "polytope" for the general case.

